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SUMMARY AND CONCLUSIONS

The propagation of sound in elliptic ducts has been investigated as a modelcase

to determine the acoustic effects of departures from symmetry in a circular duct.

The cut-off frequencies of the higher order circumferential modes in an elliptic

duct have been calculated for various duct eccentricities. The lowest orders demonstrate

an increase in cut-off frequency with eccentricity for the odd functions and a decrease

for the even, in agreement with previous work. However the higher order modes show

virtually no difference between odd and even functions and only a very small decrease

in cut-off frequency compared with a circular duct of the same area. The practical

implication of the results appears to be that even large deformations of the duct shape

will have little effect providing duct area remains constant.



SOUNDPROPAGATION IN ELLIPTIC DUCTS

Introduction

The propagation of sound in circular ducts is a phenomenon which has now been

extensively studied because of its relevance to jet engine noise. The compressor or

fan harmonics propagate down the duct as spinning modes. The spiral waves can

couple into the rotating pressure patterns generated at the compressor face, and the

behaviour of tile spinning modes is found to dominate the characteristics of the

harmonic components of jet noise radiation.

The circular duct problem was first studied, in an engine noise context, by Tyler

and Sofrin I . They showed how the very high harmonics (eigenfrequencies) of duct

response could control the rotor noise levels observed, because of the ordered nature

of the input pressure fluctuations from tile blade/vane interaction process. In particular,

for sufficiently low frequencies the radiation could be cut off, undergoing exponential

decay within the duct. The cut-off conditions can be controlled by the choice of

blade-vane numbers and have considerab|e attraction for engine noise control 2 .

The overall noise radiation problem can be considered in two parts - first the

propagation within the duct, and second the radiation from tile end of the duct into

free space. In principle these problems cannot be separated, but work by Morfey 3

and others has shown how the interaction between the two parts of the radiation

process is only significant for modes close to the cut-off condition. Most workers

have assumed this sep:_ration of the propagation process to be acceptable and most

have further modelled tile radiation from the engine inlet via a baffled source model.

Recently Lansing 4 extended the work of Levine and Schwinger s to include higher

order radiation from an unbaffled duct more representative of an engine inlet, and

has shown some degree of improvemer.t between theory and experiment.



Thusat thepresenttimethefundamentalfeaturesof enginenoisepropagationin a

circular duct are well established. Indeed Barry and Moore 6 have shown how decay rates

in a real fan inlet are remarkably close to the Tyler and Sofrin predictions. Several

workers are nowattempting to extend the theory to take account of flow within

the duct, soft walls, and higil intensity non-linear effects, and some success has been

reported in each of these areas.

However a question which has not been studied in detail is the effect of departures

from circular symmetry on the acoustic propagation. Hine 7 investigated the effect of

non-concentric annuli, and found little modification to the leading results. A. further

obvious question is the propagation in elliptic ducts. Undoubtedly several supposedly

circular intakes are in fact mildly elliptic, and the acoustic effects of this have not, so

far, been quantified. Furthermore some aircraft have adopted non-circular intakes for

design convenience and there seems to be no reason in principle wily elliptical intakes

of quite large eccentricities could not be used on real aircraft. Thus propagation of

sound in an elliptic duct appears to be a problem of some interest.

The equations governing acoustic propagation in an elliptic duct are well-known a 9 1o

They result from a separable solution to the wave equation in elliptic coordinates

and have been investigated for several cases including membranes _ and electromagnetic

wave guides 1°. However the studies hdve concentrated on tile lowest order resonance

frequency, so that little is known about the behaviour of the hi_er order modes in an

elliptic duct. It is this problem which is of particular relevance to jet engine noise

radiation. The results 9 for the lowest order modes demonstrate a separation of the

eigenfrequencies with the lowest order sine-elliptic result increasing in frequency and

the cosine-elliptic decreasing compared to the circular duct case. This result would

be of obvious interest from the noise control viewpoint if it occurred for the higher

order modes.

In this report only propagation within an elliptic duct is studied. It is hoped that

the radiation from an elliptic opening may be the subject of a later report. The

solution to the problem is given in terms of Mathieu functions. Since these functions

are not well-known, the derivation of the equations is given in some detail and for



comparativepurposes,tileequivalentproblemfor thecircularductis analysedfirstof

all. A computer program to estimate the eigenfrequencies of the elliptic duct has

been written, and results are presented in Section 4 of this report. A brief discussion

of their practical implications for engine noise is given in Section 5.

, Waves in a Circular Duct

Sound fields obey tile wave equation which is

ax 2 0y 2 az2 c 2 at 2

Transforming into cylindrical polar coordinates

X = r COS 0

y = r sin 0

z'---z

t=t

gives

= 0 (1)

_2p ÷ 1 ap +1 a 2p _ 1 a2p = 0
ar 2 r_- r2_ +az 2 c 2 0t---r

A separable solution p = pr(r)P0(0)pz(z)Pt(t) is then sought.

tile above and dividing gives

± +_L +
Pr dr2 rpr dr r2P0 d02

l d2pz 1 d2Pt

Pz dz2 c2 Pt --_ -

Substituting into

= 0

which is again separable, by putting

d02

and leaving

= -kl and
dz 2 dt 2 = Pt

r2d__. + r dpr + r2(_k_z +__2)+ 1
Prdr 2 pr dr p'-o d02 =

= -m2 Po (2)

respectively, giving

The z and t terms immediately separate out, equal to constantsl taken as k_ and -_:/c 2



andso

_r ¢°2 m2d_r +1 +(-k2z+ -ff)Pr = 0 (3)dr 2 r -_ -

The solutions to the equations in t, z and 0 can be conveniently taken as imaginary

exponentials and the solution to the equation for Pr is of the form

where

Pr = A Jm(kr)

k2 - wa
- . c'--_-- k2z (4)

and Jm is a Bessel function of the first kind and mth order. In fact tile general

solution of the equation to Pr also contains Bessel functions of the second kind, but

these go to infinity at r = 0 and so must be rejected for the present duct propagation case

where only finite pressures can be allowed along the axis of the duct.

Next the boundary conditions must be applied. For a hard wall duct these are that

the normal velocity is zero at the duct walls r = R. The normal velocity at the wall

is proportional to the radial derivative of the pressure so that this requires

_P = 0 giving Jm'(kr) = 0
ar

This is satisfied for a series of/a distinct values of k for each order m. These values

will be denoted by lqn #, and are given in several reference works, e.g. Olver 11.

These values have a crucial effect on tim sound radiation through equation (4), which

may now be rewritten as

6°2- k_--.)_• k, = (-p

Thus for any given value of km u only values of co which are greater than ckmt _

give rise to real, i.e. propagating, values of k z. Smaller values of co give rise to imaginary

values of k z which result in a decaying wave down the duct in the z-direction. This is

the cut-off effect.

These decay rates can be very large and their significance in a practical situation

has been demonstrated by several workers, e.g. Tyler and Sofrin l, Smith 2, Morfey 3, Barry

and Moore _.



. Waves in Elliptic Duct

In this case the wave equation (1) is transformed into elliptic coordinates using

x = h cosh _ cos r/

y=h sinh _sin_/

z = z (5)

t=t

This is a family of ellipses and hyperbolae as shown in Figure 1 with foci at -+h.

The r/ constant curves are hyperbola e. The _ constant curves ellipses with major axis

2h cosh _ and minor axis 2h sinh _.

Under this transformation tile wave equation becomes

2 J_2p a2p_ _ 1 _2p _ 0
h2 (cosh 2_ - cos 2r/) [ __ + _-_ | + az 2 c 2 at 2

As before, a separable solution of the form

p = p_(_) Pn(r/) Pz(z) Pt(t)

is assumed and as before the z and t terms can be immediately removed as

.2 d2Pt = ¢'O_

dz 2 = -kz Pz and dt 2 -'_ Pt

leaving

.1 d2p_ 1 d____ co2 h2

P_ d_2 +--Pr/ dr/2 + (--_''-kz)2 __2 (cosh 2_- cos 2r/) = 0

which separates into

d_ + a- ('-_-- k2z)'_cos 2./, Pn = 0 (6)dr/,2

+ (_-kl)5 cosh2_- p_= 0 (7)

'a'isa separationconstantequivalentto m 2 term used in the circularcase.

Equations (6) and (7) are versionsof Mathieu equation which have the canonical

forms,McLacltlans

d__ + (a - 2q cos 2r/)p n = 0 (8)
d_/2

and the modified Mathieu equation



d__ _ (a - 2qcosh2_)p_d_2

Thusin thepresentapplication

(.02 ' 22h
q -- (-_ --kz)- 4

and 4q/h 2 plays the role of k in the circular case.

= o (9)

(lO)

However q is of additional

significance here. As q _ 0, equation (8) tends to equation (2) already considered in

the circular case. Indeed this would correspond to h -+ 0 with the ellipses becoming

circles. It can also be shown _ that as q _ 0 equation (9) tends to the Bessel

equation (3).

The circular duct allows periodic sinusoidal waves of order m around its periphery,

which could be of either sine or cosine form depending on their value at the origin

assumed. In the clliptic duct case sine and cosine like waves can again occur but

their origin is now related to the axis of symmetry of the ellipse. It is found that

the odd "sine-elliptic" and even "cosine-elliptic" waves have distinctive features. The

solutions to equation (8) are thus found in terms of the Mathieu functions

Pn = Accem (r/'q) + AsSem ('0' q) (11)

where m is the order (a -_ m2 as q _ 0). Ilere we follow the notation of

McLachlan s.

The solution of the modified Mathieu equation (9) is given in terms of the

modified Mathieu functions of the first kind

p_ = BeCem(_,q) + BsSem(_,q) (12)

where Ce is the even "cosh-elliptic" function and Se is the odd "sinh-elliptic" function.

In fact, as with the circular case, solutions of the second, third and fourth kind can

also be found analogovs to Hankel functions, but since these do not satisfy the

continuity of pressure gradient on the hlterfocal line (see below), they must be

rejectec_ and will not be considered further here.

The conditions to be satisfied by the pressure function p in. a reference plane

z = 0 are as follows:

(a) Since p is single-valued, it is periodic in 77, with period at the most 2rr



(b) p(_,_) is a continuous function, in particular, it is continuous across the

interfocal line, so that

p(O, n) = p(O, -n)

(c) also on crossing the interfocal line, we have the continuity of pressure

gradient, so that

ap aP(o,--n)(o,n) = -

(d) on the boundary, _ = _o, since the walls of the duct are supposed to be

rigid, the component of pressure gradient normal to the wall (i.e. in the

direction of _) vanishes at the walls, i.e. ap/a_ = 0 at _ = _o.

Now because cem and sem are periodic in r_ (and with period rr or 21r, if m is a positive

integer) they satisfy the condition (a).

If Cem(_, q) is a solution of equation (9) we have Cem(0, q) is a constant and also

Cem01) = Cem(-B).

So Cem(_)Cem(r/) satisfies condition (b).

Also since Sem(0, q) = 0, Sem(0)Sem(r/) = Sem(0)Sem(-r/) and so Sem(_)Sem(r/) satisfies

condition (b).

Also sere(r/) = -sere(---r/), so that Cem(_)Sem(r/) would not satisfy (b).

It will be found that Cem(_)Cem(r/) and Sem(_)Sem(rt) combinations satisfy conditions

(c) and are in fact the only acceptable _ombinations of Mathieu functions relevant to

the problem.

Hence the permissible solution of the wave equation for the pressure field is given by

CmCem(_' q)Cem(r/' q) } eik_z cos(t_ + a) (13)p = SrnSem(_ ' c0Sem(r/, q)

which satisfy conditions (a), (b) and (c).

Now condition (d) requires that when _ = _o (i.e. on the boundary of the elliptic

duct) Op/_ = 0, which is

d Cera(_, q) [
d l = 0 (14)

= 0 or _ Sem(_'q)l_=_°

These equations give (theoretically speaking), for a given value _o of/j, an infinity of

positive values of q, which satisfy the above equations, to each value of m. The first



equation gives a set of values qm_ (.a = 0, 1, 2, ......) which satisfy it and the second

equation gives a set of values q'm_ (say) which satisfy it. These are known as parametric

zeros of the functions. For each value of #, both qmtt and Ttmu, give nodal (zero pressure)

ellipses in the reference plane. It may be noted that none of the qmtt and qm_ are the

same for the same value of m and _t.

. Propagation and Decay of Waves in the Elliptic Duct

A fundamental relationship, from equation (I0), is

kz = _-_ - h_J (15)

If the value qm_ of q attained in Section 3 is such that ¢o/c < 2X/qm_/h, an

imaginary value of kzu results giving an exponential decay of waves along the axial

direction of the duct.

If the value of qm# is such that _o/c >_ 2x/'qmJh, real values of kzu occur so that

this mode is propagated along the duct without attenuation.

• For a particular m, qmo gives the parametric zero such that if ¢dc >7 2qvrq--m_[h, then

the waves of this normal mode m are propagated; we can say that 2X/qmo/h gives the

cut-off frequency for tile particular mode m. The higher order radial modes associated

with qm_u are of less significance and will not be considered further here.

We thus require the values of these 2V/qmo/h. "i'he values obtained here are for

tile values of m = 1(1)15 and for ellipses of eccentricities e = "1(-1)-9.

The results may be scaled for different size ellipses of the same eccentricity via an

important well-known property connected with the reduced wave equation

a__ + _2P + k2
ax 2 _y2 P = 0 (16)

for a given region R - see Kornhauser and Stakgold 14.

If the above equation is valid under the boundary condition ap/i_n = 0 on the

boundary R, then there are infinity of values of k, ki(i = 0, 1,2 ....... ),

0 = ko < kt < k2 < ...... which satisfy the above equation.

If A is the area of region R, and A is the area of another region R, similar to the



regionR,andif k-i are the values of k satisfying equation (16) for region P,, then

-- 't

A (17)A

To obtain the values of the cut-off frequencies we shall consider a famhy of ellipses,

each of which encloses the same area _. If the eccentricity of the ellipse is e, the

ratio of the axes is _. The eigenvalues corresponding to any given elliptical

boundary with the same eccentricity e can be found from equation (17).

Now 4q/h 2 = k2.

Since the area of the ellipse is % h2 = e2(i - e2) -½

Let

s = 4q = k2h 2 = k2e2(1 - e2) -_6 (18)

If _ = _o on the boundary, we also have

1
cosh _o = --

e

If we write u = _ exp _o and v = x/q exp(-_o) we have

therefore

_a = u + v = 2vrq " cosh _o = X/s-cosh /;o

2 s = k2(1 _ e2)-½ (19)

It is not possible in practice to determine the parametric zeros by a direct

evaluation. The procedure adopted here was as follows:

The radial (modified) Mathieu functions can be expmtded in a rapidly converging

Bessel function series with argument x/s-cosh _. The coefficients of these series for

given values.of s are tabulated in Reference 13 . Taking a particular value of m,

wo is calculated for each value of s. The computer program evaluates the values

proportional to Ce m and Sem for incremental values of x/_-cosh/j starting from

at an interval of 0.5 (for orders m = 1,2, an increment of 0.1 has been given) and

when the function changes sign from positive to negative the zero ,.'s found by means

of iteration. The accuracy of the program was checked to eight significant figures

for lower values of m and up to six significant figures for a higher m. Once the

value of e is obtained the value of k can be evaluated with the help of the equation 19.



Thoughthese are the values that are required for the cut-off frequencies, the

values of e obtained are not those desired, and are at unequal intervals. However,

the required values of the cut-off frequencies for e = .1('1)'9 can be found by inter-

polation. These values are tabulated in Tables I and II for even and odd radial

functions respectively for orders m --- 1 - 15. These tables have an error of maximum

of 3 units in the third decimal place.

Discussion

The remarkable feature of the results of Tables I and II is their small deviation from

the circular case. The results Of Daymond 9 for the lowest order modes demonstrated

an increase in cut-off frequency for the odd functions and a decrease for the even,

and tl_e computations presented here were undertaken in the expectation that this

effect would carry over to the higher modes. However, while the present results are

entirely consistent with Daymond for the lower modes they also demonstrate that the

higher order odd and even modes are virtually indistinguishable, with only a very small

reduction in cut-off frequency from the circular case.

• A feature of the present results is the reference of all calculations to ellipses of

equal area. It has been usual to take other scale references - for instance tile major

axis or interfocal distance - and this would mask the effect noted here. Attempts

have been made to predict this effect analytically. These have not met with success,

althougla it would appear that a very strongly convergent solution should exist based

on the Bessel function zeros.

The practical implication of these results is that even major deformations of inlet

shape which retain equal inlet area will have virtually no influence on the cut-off

conditions of the sound radiated. How far these elliptical results could be carried over

to other shapes is, of course, questionable. Nevertheless, this result would appear to give

a useful insight for the interpretation of engine noise data.

The possible use of elliptic intakes as a noise control device seems to be unrewarding,

at least from the point of view of cut-off frequency. However two other effects could

perhaps be of value here. Firstly the attenuation of any absorbent liners would probably



increaseastheductwallscomeclosertogether.Secondlytherecouldbepossible

advantagesto begainedfromthedirectionalitypatternof thesoundradiatedfrom

anellipticduct,whichcouldallowsomeazimuthalredistributionof thenoisefield.



TableI - Even Functions

0 .1 .2 .3 .4 .5 .6 .7 .8 .9

1

2

3

4

5

6

7

8

9

10

1.8412 1.838 1.825 1.803 1.768 1.720 1.670 1.575 1.442 1.235

3.0542 3.054 3.053 3.048 3.030 3.000 2.932 2.815 2.620 2.273

4.2012 4.200 4.200 4.197 4.190 4.168 4.115 4.000 3.762

5.3176 5.317 5.317 5.315 5.307 5.287 5.240 5.130 4.872 4.277

6.4156 6.415 6.415 6.413 6.405 6.382 6.330 6.228 5.958 5.278

7.5013 7.500 7.500 7.498 7.488 7.465 7.413 7.300 7.017 6.252

8.5778 8.578 8.578 8.572 8.562 8.537 8.482 8.357 8.062 7.225

9.6474 9.647 9.645 9.643 9.630 9.603 9.580 9.408 9.093

10.7114 10.710 10.7'10 10.705 10.692 10.662 10.585 10.453

11.7709 11.770 11.768 11.765 11.753 11.720 11.645 11.487

11 12.8265 12.285 12.822 12.820 12.805 12.770 12.690

12 13.8788 13.875 13.873 13.870 13.855 13.820 13.738

13 14.9284 14.928 14.928 14.923 14.905 14.862 14.775

14 15.9754 15.975 15.975 15.968 15.947 15.905

15 17.0203 17.020 17.017 17.010 16.992 16.948

Table II -- Odd Functions

1

2

3

4

5

6

7

8

9

10

II

0 .1 .2 .3 .4 .5 .6 .7 .8 .9

12

13

14

15

1.8412 1.855 1.877 1.890 1.920 1.960 2.027 2.138 2.312 2.650

3.0542 3.055 3.058 3.060 3.062 3.068 3.083 3.110 3.180 3.380

4.2012 4.185 4.172 4.188 4.193 4.182 4.165 4.140 4.118 4.152

5.3176 5.317 5.317 5.315 5.307 5.290 5.257 5.195 5.095 4.973

6.4156 6.145 6.410 6.402 6.382 6.370 6.252 6.093 5.822

7.5013 7.500 7.500 7.498 7.488 7.463 7.412 7.310 7.097 6.695

8.5778 8.578 8.578 8.572 8.562 8.565 8.480 8.360 8.110

9.6474 9.647 9.645 9.643 9.630 9.625 9.540 9.410 9.120

10.7114 10.710 10.710 10.705 10.693 10.662 10.595 10.450

11.7709 11.770 11.767 11.762 11.750 11.717 11.645 11.485

12.8265 12.825 12.823 12.820 12.805 12.770 12.690

13.8788 13.875 13.872 13.870 13.855 13.823 13.732

14.9284 14.928 14.928 14.922 14.905 14.862 14.775

15.9754 15.975 15.975 15.967 15.947 15.905

17.0203 17.020 17.018 17.010 16.993 16.948
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